

3rd annual UNMANDED SYSTEMS WEST

Robotic Systems Capabilities Needs & Requirements and Partnerships for Effective Solution Implementation

STRATEGIC DEVELOPMENT FRAMEWORK FOR

AUTONOMOUS SYSTEMS RESEARCH & DEVELOPMENT AT MIT LINCOLN LABORATORY

Dr. Leena Singh

Senior Technical Staff, Control & Autonomous Systems Engineering Massachusetts Institute of Engineering Lincoln Laboratory

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering.

© 2024 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or 7014 or DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

DOD AUTONOMOUS SYSTEMS NEEDS

D
Ň
\mathbf{n}
U

Defense

Objectives

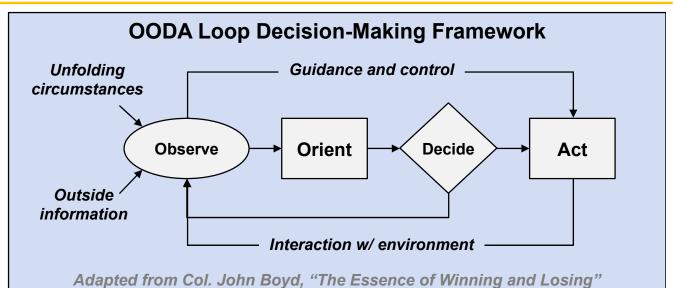
National Defense Strategy Defense Priorities[†]

- Defending the homeland, paced to the growing multi-domain threat
- Deterring strategic attacks against the United States, Allies, and partners
- Deterring aggression, while being prepared to prevail in conflict when necessary, prioritizing the PRC challenge in the Indo-Pacific, then the Russia challenge in Europe
- Building a resilient Joint Force and defense ecosystem

Joint Warfighting Concept

- Joint All Domain C2
- Joint Fires
- Contested Logistics
- Information Advantage

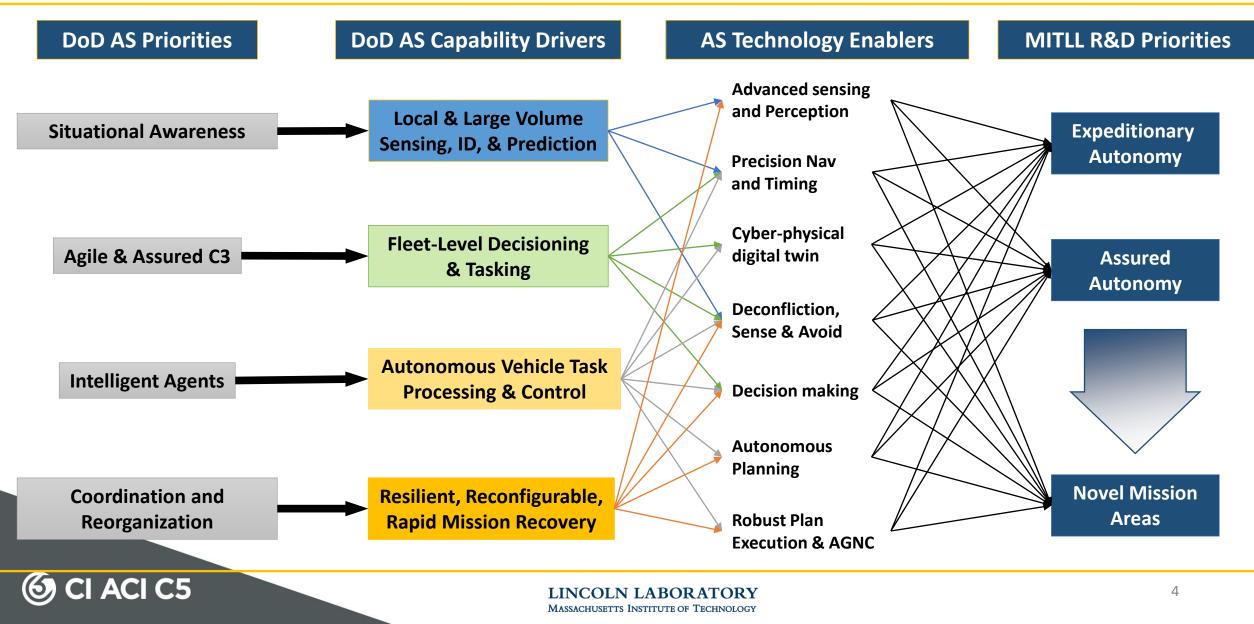
OUSD(R&E) National Defense Strategy	Unmanned Strategic Objectives	Autonomy* Opportunity Areas		
	Key capabilities modernization	Space and Cyber missions, C4ISR, joint lethality, advanced expeditionary autonomy		
Build a More Lethal Force	Innovative operational concepts	Application of heterogeneous teams, including human- machine teams		
	Mobile and resilient force development	Resilient and agile logistics, unmanned systems deployment planning		
Strengthen Alliances and Attract New Partners	Deepen interoperability	Algorithms and architectures robust to platform and sensor variety		
Enhance ability of DoD to deliver Greater Performance and Affordability	Deliver performance at relevant time scales	Continuous adaptation, scalability, modularization		
	Rapid, iterative development to field	Rapid prototyping, testbeds and simulation environments		

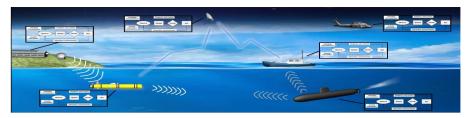

*Adapted from Department of the Navy Unmanned Campaign Framework March 16, 2021

† National Defense Strategy March 28, 2022

AUTONOMY IN DYNAMIC SYSTEMS

- MIT IR&D Autonomous systems objective
 - Enable a platform or team to execute a decision-making framework with reduced human intervention
 - Application of AI or other decision-making to systems in motion
- Functional and operational Technology Pillars of an autonomous system
 - Sensing & Perception
 - Planning & Decision-making
 - Execution & Control
 - Coordination, Collaboration, & Reorganization


Cross-Domain Heterogenous Team of Autonomous Agents



AUTONOMOUS SYSTEM IR&D INVESTMENT PRIORITY STRATEGY

MIT LINCOLN AUTONOMOUS SYSTEM TECHNOLOGY/THRUST RUBRIC

	Autonomous Systems Technology		Autonomous System Capability Thrusts		
	Major Technology Classes	Technology Sub-Classes	Expeditionary Autonomy	Assured Autonomy	Novel mission Areas
Unfolding circumstances circumstances outstate information Adapted from Col. John Boyd, "The Essence of Winning and Losing"	Perception & Estimation	Perception State Estimation Fault Detection & Identification (FDI)			
	Planning & Reasoning	Mission & Resource Planning / Scheduling Motion Planning Fault Accommodation			
	Execution & Control	Guidance & Trajectory Design Control			
	Heterogeneous Teaming & Interoperability	Behavior & Intent Prediction Goal & Task Negotiation Operations Trust			

OODA Loop Decision-Making Framework

AUTONOMOUS SYSTEMS: ANALYSIS OF STATE OF THE ART

Gaps, Drivers, Needs, and Opportunities

Expeditionary Autonomy

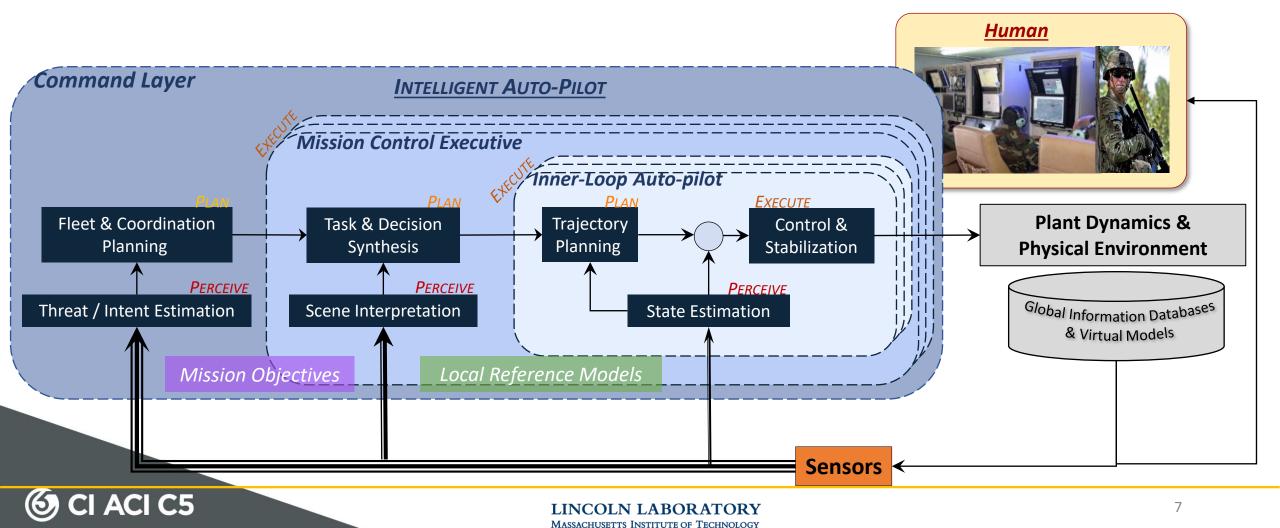
- [D] Intelligent perception, decision making, reasoning, & GNC in adversarial, uncertain environments
- [D] Scalable, distributed and robust multiagent systems for C2, data, and/or PNT
- [G] Analytic and AI/ML algorithms for low SWaP expeditionary systems
- [G] Minimal human control in dynamic & unpredictable scenarios
- [O] Force multiplication of complex tasking with swarms of simple agents

- [D] Trust-enabling V&V of AS operating in complex environments, including humanmachine teaming
- [D] Methods and algorithms to develop and test behavioral bounding
- [N] Learning how to learn
- [N] Developing intelligence with common sense
- [O] Autonomy-driven real time decision support to provide better situational awareness to humans

Human-Machine Teaming

- [O] Scalable teaming of autonomous systems
- [N] Effective human-machine interaction for teaming and autonomy-augmented performance
- [O] Collaboration (heterogeneous teaming) vs. coordination & cooperation (homogeneous teaming)

Enabling Novel Mission Areas


- [G] Autonomy-focused mission utility analysis and studies in adversarial, degraded, and extreme environments
- [D] Mission-tailored vehicle & autonomy architectures
- [N] Evaluations and trades to include novel sensor & actuators

🎯 CI ACI C5

GNC: Guidance, Navigation, & Control C2: Command & Control PNT: Precision Navigation & Timing AI/ML: Artificial Intelligence/Machine Learning SWaP: Size Weight & Power V&V: Verification & Validation

AUTONOMOUS SYSTEM ARCHITECTURE FRAMEWORK

Goal: Develop advanced algorithms and technologies that enable autonomous platforms to conduct missions of national security relevance in dynamic, unpredictable, and unstructured environments

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY